Murthy S. Gudipati
Jet Propulsion Laboratory, California Institute of Technology, Pasadena '
Team: Fred Bateman (NIST)
Consultants: Shawn Kang (JPL); Henry Garrett (JPL)

Europa Clipper Science Series, Sep 22, 20‘17




Composmon
‘ “'m
-Interior Ocean/lce Compositio \
-Near-Surface Composition
-Surface Composition (Spectral skin- depih)
-Exosphere Composition

If present & detected, plumes directly connect

Interior composition to surface and exosphere

© 2017 California Institute of Technolo . Government sp p nsorship acknowledged.




»

o ) et ""'

fEuropa Composition & Radiation

* Plumes connect interior composition directly to surface
and exosphere.

* For transport of any other kind, radiation alters the
observed vs. expected composition of the interior.

« The extent of radiation altering is determined by the
frequency of upwelling/renewing the surface.

Radiation & Composition of Europa are Inseparable!
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Radiation Environmnet of Europa
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Electrons Reaching Europa’s Surface: Trailing (colored)
Hemisphere: <25 MeV,; Leading Hemisphere: >25 MeV
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Europa Radlatlon Enwronment
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Galileo Orbiter measurements of energetic ions (20 keV to 100 MeV) and electrons (20-700 keV)
in Jupiter’s magnetosphere are used in conjunction with the JPL electron model (<40 MeV) to
compute irradiation effects in the surface layers of Europa, Ganymede, and Callisto. Significant
elemental modifications are produced on unshielded surfaces to approximately centimeter depths
in times of 106 years, whereas micrometer depths on Europa are fully processed in <10 years.

John Cooper et al. Icarus (2001)
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Electron Flux at Europa
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'I Electron Flux at Europa
10° 5 i 4
—0-0-0—9— @ .‘.-. x
e ¥
< 10°4 .‘." E
s .,
o "o
= Ne
= o
10 L 3
™ \.
=
o)
g 10° \' E
LL \. :
10° L a2 . ) — 4
Trailing Hemisphere > \.
Integral electron \J |/
flux
10° LR AL L AL B L B R Ll B AL B R AL L
1E-6 1E-5 1E-4 1E-3 0.01 0.1 1 10 100 1000
/ Electron Energy (MeV)
© 2017 California Institute of Technology. Government sponsorship acknowledged. 6




1.00E+08

N
.
APL Total
A —>— JPL Photons
—®— JPL Electrons

1.00E+06 === ™=JPL Total
1.00E+05

1.00E+04

Dose (rad)

1.00E+02

1.00E+01

1.00E+00
0.001 0.01 0.1

’,

© 2017 California Institute of Technology. Government sponsorship acknowledged.

Preventing the Forward Contamination of Europa, National Academy of Sciences Report, 2000.
FIGURE 2.3 Radiation dose models for Europa, in rad [water] per month (30.4 days) of exposure below varying
thicknesses of ice. The results of two independent evaluations are given, “JPL Total” and “APL Total.” For the
JPL Total model, the separate contributions of electrons and photons (bremsstrahlung) are shown. The APL Total
model has higher proton fluxes at very high energies. In addition to the theoretical uncertainties in Europa’s
radiation environment (as indicated by the differences between the APL and JPL models), natural variations of up to
an order of magnitude have been observed in Jupiter’s trapped-particle intensities over the 25-year span between the
Pioneer and Galileo missions. Information provided by J.M. Ratliff of the Jet Propulsion Laboratory and C.P.
Paranicas of the Applied Physics Laboratory, Johns Hopkins University.
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Electron Impact on Matter:
- Primary and Secondary Radiation
Pl R ema . |

Secondary
Photons
(X-ray to UV)

Radiation Protected

Secondary
Electrons (e”)

Tertiary
@ Electrons (e)
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lectron Radiation on Europa’s Surface: Models

Patterson et al.

| | T ?{ — ﬂ
' Trailing- - Leading |»
Hemisphere . _Hemispherg
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100 keV ~140 um; 1 MeV ~4.4 mm; 10 MeV ~ 5 cm
Bremsstrahlung penetrates ~20 times deeper
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ice thickne

10 keV electrons
Density 0.9g/cm?
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CASINO simulations for penetration
paths of 10 keV electrons through
ice of 0.9 g/cm3
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Sigmoidal not a Delta Function

Electron penetration
Into ice IS a statistical

phenomenon — that can
be approximated by a
sigmoidal equation
(probability):

Penetration depths must have percentile qualifier.
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The default is 50% of the particles (electrons).
The rest of the 50% make to further depths.
penetrate deeper than 12 cm 1




| 100 keV
Electrons: ~140 um
~15 cm

10 MeV
~5cm
~100 cm

1 MeV
~4.4 mm
~30 cm

X-rays:

10 107
3

100 cm

10 cm
10 cm penetration: -
20 MeV electrons or §
950 keV X-rays 8

100 cm penetration: :
1000 MeV electrons or
10 MeV X-rays ‘

107 107

10°

Electrons

—— Water X-ray 90% attenuation depth (¢m)
—— Water electron CSDA depth (cm)

1

10 10° 10’ 10°
Electron/X-ray Energy (MeV)

Electrons: http://physics.nist.gov/IPhysRefData/Star/Text/ ESTAR.html

S

X-rays: http://www.nist.gov/pml/data/xraycoef/index.cfm 12
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¥ Bren‘lsstrahlung the Secondary Radiation

Higher the electron energy, Shorter " EI o
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ESTAR Electron Penetration Depth (cm)
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Modeling Studies were based on:
Liquid water and other non-ice targets.
Energies different from Europa’s surface.

Extrapolations were done to estimate under Europa’s conditions.

Until We Started Our Laboratory Studies
At the Ice Spectroscopy Lab (ISL) of JPL
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A

ICE HEART @ ISL

(lce Chamber for Europa;s High-Energy
Electron And Radiation-Environment Testing)

17

© 2017 California Institute of Technology. Government sponsorship acknowledged.




Outer Telescope with
vacuum seal O-rings.

Inner 2.5-inch diameter
tube for water ice frozen
in the tube or loaded as
crushed powder.

Insulated for 100 K operation
Using liquid nitrogen cooling.
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"i'evc.:tron Sources Cover 300 keV to 28 MeV
R g e —
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High-Radiation Environment
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@ lce Sample Handling in (subsequen to)




How to Quantify Bremsstrahlung (X-rays)?
= /. By Removing Segondary Electrons

g
First Successful Incorporatlon of Halbach Cyllndrlcal Magnet

Deflecting Primary and Secondary Electrons Enables
Quantification of X-ray Yields and Penetration Depths
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¥ .Secondary Electrons vs. X-rays

First JPL-NIST MIRF Data for 10 MeV Primary Electrons

electrons

5cmice

secondary electrons
bremsstrahlung

Organics

Damage through
sec. ele. 80%; X-rays 20%

S
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bombarding 5 cm thick ice targets at 100 K

Simulating Europa’s Surface Radiation Damage of Organics
Critical for Future Lander Missions & Surface Habitability
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[ [—m— pure H20
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Primary Electron Current ( uA)
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Salts on Europa
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Sulfates & Chlorides
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High Radiation Environment:

2 Volatiles from Salts'on Eurgpa

S -
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High Radiation Environment:

Volatiles from MgS0,(7Hy0) on Eurgpa

355 nm (MgSO,)*?
Laser ablation

= ,
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Low Radiation Environment:

= Volatiles from Salts-on Europa
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Low Radiation Environment:

"z Volatiles from Saits‘on Eurgpa
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Low Radiation Environment:

Mtlles from Salt-Slusry ‘on Eurgpa

S
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2948 nn IR ablation
266 nm UV ionization
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= =4 PhySical Properties of Europa’s Surface Ice

We are presently conducting laboratory studies to
understand physical properties of ice and salts at
MeV radiation environment

lce (+ Salts):

a) Hardness with/without MeV Radiation

b) Coloration with/without MeV Radiation

c) Chemical composition alteration under MeV Radiation
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Conclusions & Future Work
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Preliminary Conclusions

Secondary photons (X-rays) could penetrate up to 1m deep on trailing
hemisphere of Europa (close to the equator).

Bremsstrahlung (secondary photons) damage to organics is NOT
INSIGNIFICANT (~20%)

Secondary Electron Yields are HIGH in Salts (vs. pure ice)
Bremsstrahlung (secondary photons) Yields are LOW in Salts (vs. pure ice)

Surface composition of Europa would be dictated by the altitude dependent
geological activity. Geologically inactive regions are expected to be heavily
processed.

vVVY VWV V

Future Work

» A lot to do and to publish a lot of results
» Funding (?) so far unsuccessful from several attempts with NSPIRES
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The END

We need a Cdrgso’f‘tlum for
~La,boratory*VV@rk
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Radlatlon Units and Confusions

A
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(100 rem)

1rad =6.24 x 103 eV g'; 60 million 1 MeV electrons

Max permissible dose for humans (astronauts) = 25 rem/year
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Preventing the Forward Contamination of Europa. National Academy of Sciences Report, 2000.
FIGURE 2.3 Radiation dose models for Europa, in rad [water] per month (30.4 days) of exposure below varying
thicknesses of ice. The results of two independent evaluations are given, “JPL Total” and “APL Total.” For the

1rad =1rem =6.24 x 103 eV g''; 2.28 x 108 eV/H,Olyear
Max permissible dose for humans (astronauts) = 25 rem/year
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¢ _Radiation Dose in the Laboratory

e TRYT . e’
1 uA = 10-°Coloumbs/s = 6.242 x 1072 Electrons or Protons per second
1rem=1rad=6.24 x 103 eV g =

1 pA of 10 eV electrons

OR
60 million 1 MeV electrons

OR

6 x 106 10 MeV electrons

Max permissible dose for humans (astronauts) = 25 rem/year

(Equivalent to ~0.15 nA or 1.5 x 108 electrons per gram at 10 MeV)

@ 39
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Li Barnett, Lignell, Gudipati ApJ 747:13 (11pp), 2012 40
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" Modeling electron induced organic damage
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Initial ice layer
Pyrene + Ice layer ,
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Final ice layer
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“~-Etropa Organic Radiation Processing Studies C
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| - Radiation budgetlpropertles on Europa’s (near)Surface |
| - Surface composition under radiation !
i - Near-surface ice composition i
! - Radiation processing of organics on/near surface |
| - Sputtering of surface/near-surface material i
i - Potential Plume Composition i
| |
| I

Electron Bombardment of Icy Surface
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¢ . Quantification of Bremsstrahlung (X-rays)

_ " p R N Y Y P
First Successful Incorporation of Halbach Cylindrical Magnet
Deflecting Primary and Secondary Electrons Enables
Quantification of X-ray Yields and Penetration Depths

& )
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ANT Simulation of 30 MeV Primary Electron yields

- f Secondary Electrons and Bremsstrahlung (X-rays)..zs=
at various Depths through Ice
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= X-rays continue penetrating

= e deeper into the ice surface

= | beyond the reach of primary and
0 0.8 \\ secondary electrons.
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“' E-HI:'ART: Realistic Europa’s Surface Conditions
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